Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cancers (Basel) ; 15(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37627098

RESUMO

Cystic formation in human primary brain tumors is a relatively rare event whose incidence varies widely according to the histotype of the tumor. Composition of the cystic fluid has mostly been characterized in samples collected at the time of tumor resection and no indications of the evolution of cystic content are available. We characterized the evolution of the proteome of cystic fluid using a bottom-up proteomic approach on sequential samples obtained from secretory meningioma (SM), cystic schwannoma (CS) and cystic high-grade glioma (CG). We identified 1008 different proteins; 74 of these proteins were found at least once in the cystic fluid of all tumors. The most abundant proteins common to all tumors studied derived from plasma, with the exception of prostaglandin D2 synthase, which is a marker of cerebrospinal fluid origin. Overall, the protein composition of cystic fluid obtained at different times from the same tumor remained stable. After the identification of differentially expressed proteins (DEPs) and the protein-protein interaction network analysis, we identified the presence of tumor-specific pathways that may help to characterize tumor-host interactions. Our results suggest that plasma proteins leaking from local blood-brain barrier disruption are important contributors to cyst fluid formation, but cerebrospinal fluid (CSF) and the tumor itself also contribute to the cystic fluid proteome and, in some cases, as with immunoglobulin G, shows tumor-specific variations that cannot be simply explained by differences in vessel permeability or blood contamination.

2.
Pharmaceutics ; 15(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37111564

RESUMO

Berberine (BBR) is known for its antitumor activity and photosensitizer properties in anti-cancer photodynamic therapy (PDT), and it has previously been favorably assayed against glioblastoma multiforme (GBM)-derived cells. In this work, two BBR hydrophobic salts, dodecyl sulfate (S) and laurate (L), have been encapsulated in PLGA-based nanoparticles (NPs), chitosan-coated by the addition of chitosan oleate in the preparation. NPs were also further functionalized with folic acid. All the BBR-loaded NPs were efficiently internalized into T98G GBM established cells, and internalization increased in the presence of folic acid. However, the highest mitochondrial co-localization percentages were obtained with BBR-S NPs without folic acid content. In the T98G cells, BBR-S NPs appeared to be the most efficient in inducing cytotoxicity events and were therefore selected to assess the effect of photodynamic stimulation (PDT). As a result, PDT potentiated the viability reduction for the BBR-S NPs at all the studied concentrations, and a roughly 50% reduction of viability was obtained. No significant cytotoxic effect on normal rat primary astrocytes was observed. In GBM cells, a significant increase in early and late apoptotic events was scored by BBR NPs, with a further increase following the PDT scheme. Furthermore, a significantly increased depolarization of mitochondria was highlighted following BBR-S NPs' internalization and mostly after PDT stimulation, compared to untreated and PDT-only treated cells. In conclusion, these results highlighted the efficacy of the BBR-NPs-based strategy coupled with photoactivation approaches to induce favorable cytotoxic effects in GBM cells.

3.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835317

RESUMO

Celiac disease (CD) is a chronic and systemic autoimmune disorder that affects preferentially the small intestine of individuals with a genetic predisposition. CD is promoted by the ingestion of gluten, a storage protein contained in the endosperm of the seeds of wheat, barley, rye, and related cereals. Once in the gastrointestinal (GI) tract, gluten is enzymatically digested with the consequent release of immunomodulatory and cytotoxic peptides, i.e., 33mer and p31-43. In the late 1970s a new group of biologically active peptides, called gluten exorphins (GEs), was discovered and characterized. In particular, these short peptides showed a morphine-like activity and high affinity for the δ-opioid receptor (DOR). The relevance of GEs in the pathogenesis of CD is still unknown. Recently, it has been proposed that GEs could contribute to asymptomatic CD, which is characterized by the absence of symptoms that are typical of this disorder. In the present work, GEs cellular and molecular effects were in vitro investigated in SUP-T1 and Caco-2 cells, also comparing viability effects with human normal primary lymphocytes. As a result, GEs treatments increased tumor cell proliferation by cell cycle and Cyclins activation as well as by induction of mitogenic and pro-survival pathways. Finally, a computational model of GEs interaction with DOR is provided. Altogether, the results might suggest a possible role of GEs in CD pathogenesis and on its associated cancer comorbidities.


Assuntos
Doença Celíaca , Glutens , Humanos , Glutens/química , Células CACO-2 , Peptídeos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Proliferação de Células
4.
Cells ; 11(16)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010578

RESUMO

Photodynamic therapy (PDT) is a promising anticancer strategy based on the light energy stimulation of photosensitizers (PS) molecules within a malignant cell. Among a multitude of recently challenged PS, Rose bengal (RB) has been already reported as an inducer of cytotoxicity in different tumor cells. However, RB displays a low penetration capability across cell membranes. We have therefore developed a short-term amino acids starvation protocol that significantly increases RB uptake in human astrocytoma cells compared to normal rat astrocytes. Following induced starvation uptake, RB is released outside cells by the exocytosis of extracellular vesicles (EVs). Thus, we have introduced a specific pharmacological treatment, based on the GW4869 exosomes inhibitor, to interfere with RB extracellular release. These combined treatments allow significantly reduced nanomolar amounts of administered RB and a decrease in the time interval required for PDT stimulation. The overall conditions affected astrocytoma viability through the activation of apoptotic pathways. In conclusion, we have developed for the first time a combined scheme to simultaneously increase the RB uptake in human astrocytoma cells, reduce the extracellular release of the drug by EVs, and improve the effectiveness of PDT-based treatments. Importantly, this strategy might be a valuable approach to efficiently deliver other PS or chemotherapeutic drugs in tumor cells.


Assuntos
Astrocitoma , Exossomos , Fotoquimioterapia , Aminoácidos , Animais , Astrocitoma/tratamento farmacológico , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Ratos , Rosa Bengala/química , Rosa Bengala/farmacologia
6.
J Pers Med ; 11(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34683083

RESUMO

Photodynamic therapy (PDT) has recently attracted interest as an innovative and adjuvant treatment for different cancers including malignant gliomas. Among these, Glioblastoma (GBM) is the most prevalent neoplasm in the central nervous system. Despite conventional therapeutic approaches that include surgical removal, radiation, and chemotherapy, GBM is characterized by an extremely poor prognosis and a high rate of recurrence. PDT is a physical process that induces tumor cell death through the genesis and accumulation of reactive oxygen species (ROS) produced by light energy interaction with a photosensitizing agent. In this contribution, we explored the potentiality of the plant alkaloid berberine (BBR) as a photosensitizing and cytotoxic agent coupled with a PDT scheme using a blue light source in human established astrocytoma cell lines. Our data mainly indicated for the combined BBR-PDT scheme a potent activation of the apoptosis pathway, through a massive ROS production, a great extent of mitochondria depolarization, and the sub-sequent activation of caspases. Altogether, these results demonstrated that BBR is an efficient photosensitizer agent and that its association with PDT may be a potential anticancer strategy for high malignant gliomas.

7.
Cancers (Basel) ; 13(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070023

RESUMO

Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults, with an average survival time of about one year from initial diagnosis. In the attempt to overcome the complexity and drawbacks associated with in vivo GBM models, together with the need of developing systems dedicated to screen new potential drugs, considerable efforts have been devoted to the implementation of reliable and affordable in vitro GBM models. Recent findings on GBM molecular features, revealing a high heterogeneity between GBM cells and also between other non-tumor cells belonging to the tumoral niche, have stressed the limitations of the classical 2D cell culture systems. Recently, several novel and innovative 3D cell cultures models for GBM have been proposed and implemented. In this review, we first describe the different populations and their functional role of GBM and niche non-tumor cells that could be used in 3D models. An overview of the current available 3D in vitro systems for modeling GBM, together with their major weaknesses and strengths, is presented. Lastly, we discuss the impact of groundbreaking technologies, such as bioprinting and multi-omics single cell analysis, on the future implementation of 3D in vitro GBM models.

8.
Cells ; 9(10)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007988

RESUMO

Human astrocytic tumors are primary central nervous system (CNS) tumors that arise either from astrocytes or from precursor cells. A growing number of epidemiological and incidence studies in different countries underlined that, in addition to increasing economic costs for health systems, these cancers are still representing one of the main hurdles in developing a successful therapeutic goal for patients. On the other hand, new-omics technologies are offering customized instruments and more and more advantageous results toward personalized medicine approaches, underlining the concept that each tumor mass undergoes a peculiar transformation process under the control of specific genes' and proteins' functional signatures. The main aim of this Special Issue was to collect novel contributions in the wide field of human tumor astrocytic basic and translational research, to suggest further potential therapeutic targets/strategies that might interfere, possibly at the earliest stage of transformation, with the tumor progression, and to increase the molecular-based arsenal to counteract the prognostic poverty of high-grade astrocytic tumors.


Assuntos
Apoptose/genética , Astrocitoma/metabolismo , Neoplasias Encefálicas/fisiopatologia , Terapia Genética/métodos , Humanos
9.
Cells ; 9(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640653

RESUMO

Extracellular vesicles (EVs) are considered as promising nanoparticle theranostic tools in many pathological contexts. The increasing clinical employment of therapeutic nanoparticles is contributing to the development of a new research area related to the design of artificial EVs. To this aim, different approaches have been described to develop mimetic biologically functional nanovescicles. In this paper, we suggest a simplified procedure to generate plasma membrane-derived nanovesicles with the possibility to efficiently encapsulate different drugs during their spontaneously assembly. After physical and molecular characterization by Tunable Resistive Pulse Sensing (TRPS) technology, transmission electron microscopy, and flow cytometry, as a proof of principle, we have loaded into mimetic EVs the isoquinoline alkaloid Berberine chloride and the chemotherapy compounds Temozolomide or Givinostat. We demonstrated the fully functionality of these nanoparticles in drug encapsulation and cell delivery, showing, in particular, a similar cytotoxic effect of direct cell culture administration of the anticancer drugs. In conclusion, we have documented the possibility to easily generate scalable nanovesicles with specific therapeutic cargo modifications useful in different drug delivery contexts.


Assuntos
Membranas Artificiais , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares/química , Nanomedicina/métodos
10.
Cancer Genomics Proteomics ; 17(2): 117-130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32108034

RESUMO

BACKGROUND/AIM: We herein presented a case of pediatric spinal cord pilocytic astrocytoma diagnosed on the basis of histopathological and clinical findings. MATERIALS AND METHODS: Given the paucity of data on genetic features for this tumor, we performed exome, array CGH and RNA sequencing analysis from nucleic acids isolated from a unique and not repeatable very small amount of a formalin-fixed, paraffin-embedded (FFPE) specimen. RESULTS: DNA mutation analysis, comparing tumor and normal lymphocyte peripheral DNA, evidenced few tumor-specific single nucleotide variants in DEFB119, MUC5B, NUDT1, LTBP3 and CPSF3L genes. Differently, tumor DNA was not characterized by for the main pilocytic astrocytoma gene variations, including BRAFV600E. An inframe trinucleotides insertion involving DLX6 or lnc DLX6-AS1 genes was scored in 44.9% of sequenced reads; the temporal profile of this variation on the expression of DLX-AS1 was investigated in patient's urine-derived exosomes, reporting no significant variation in the one-year molecular follow-up. Array CGH identified a tumor microdeletion at the 6q25.3 chromosomal region, spanning 1,01 Mb and comprising ZDHHC14, SNX9, TULP4 and SYTL3 genes. The expression of these genes did not change in urine-derived exosomes during the one-year investigation period. Finally, RNAseq did not reveal any of the common pilocytic BRAF-KIAA1549 genes fusion events. CONCLUSION: To our knowledge, the present report is one of the first described gene-orphan case studies of a pediatric spinal cord pilocytic astrocytoma.


Assuntos
Astrocitoma/diagnóstico , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/diagnóstico , Imuno-Histoquímica/métodos , Criança , Humanos , Masculino , Neoplasias da Medula Espinal/diagnóstico
11.
Cells ; 8(11)2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766310

RESUMO

Metastatic spread is mainly sustained by cancer stem cells (CSC), a subpopulation of cancer cells that displays stemness features. CSC are thought to be derived from cancer cells that undergo epithelial to mesenchymal transition (EMT), thus acquiring resistance to anoikis and anti-cancer drugs. After detachment from the primary tumor mass, CSC reach the blood and lymphatic flow, and disseminate to the target tissue. This process is by nature dynamic and in vitro models are quite far from the in vivo situation. In this study, we have tried to reproduce the adhesion process of CSC to a target tissue by using a 3D dynamic cell culture system. We isolated two populations of 3D tumor spheroids displaying CSC-like features from breast carcinoma (MCF-7) and lung carcinoma (A549) cell lines. Human fibroblasts were layered on a polystyrene scaffold placed in a dynamically perfused millifluidic system and then the adhesion of tumor cell derived from spheroids to fibroblasts was investigated under continuous perfusion. After 24 h of perfusion, we found that spheroid cells tightly adhered to fibroblasts layered on the scaffold, as assessed by a scanning electron microscope (SEM). To further investigate mechanisms involved in spheroid cell adhesion to fibroblasts, we tested the effect of three RGD integrin antagonists with different molecular structures on cell adhesion; when injected into the circuit, only cilengitide was able to inhibit cell adhesion to fibroblasts. Although our model needs further refinements and improvements, we do believe this study could represent a promising approach in improving current models to study metastatic infiltration in vitro and a new tool to screen new potential anti-metastatic molecules.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Esferoides Celulares , Células Tumorais Cultivadas , Biomarcadores , Adesão Celular , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/patologia , Fibroblastos/ultraestrutura , Expressão Gênica , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/ultraestrutura , Fenótipo , Esferoides Celulares/efeitos dos fármacos
12.
Adv Sci (Weinh) ; 6(8): 1801927, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31016112

RESUMO

Since invasive bladder cancer (BC) can progress to life threatening metastases, understanding the molecular mechanisms underlying BC invasion is crucial for potentially decreasing the mortality of this disease. Herein, it is discovered that autophagy-related gene 7 (ATG7) is remarkably overexpressed in human invasive BC tissues. The knockdown of ATG7 in human BC cells dramatically inhibits cancer cell invasion, revealing that ATG7 is a key player in regulating BC invasion. Mechanistic studies indicate that MIR190A is responsible for ATG7 mRNA stability and protein overexpression by directly binding to ATG7 mRNA 3'-UTR. Furthermore, ATG7-mediated autophagy promotes HNRNPD (ARE/poly(U)-binding/degradation factor 1) protein degradation, and in turn reduces HNRNPD interaction with ARHGDIB mRNA, resulting in the elevation of ARHGDIB mRNA stability, and subsequently leading to BC cell invasion. The identification of the MIR190A/ATG7 autophagic mechanism regulation of HNRNPD/ARHGDIB expression provides an important insight into understanding the nature of BC invasion and suggests that autophagy may represent a potential therapeutic strategy for the treatment of human BC patients.

13.
Cells ; 8(4)2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013754

RESUMO

Celiac disease (CD) is a chronic systemic autoimmune disorder that is triggered by the ingestion of gliadin peptides, the alcohol-soluble fraction of wheat gluten. These peptides, which play a key role in the immune response that underlies CD, spontaneously form aggregates and exert a direct toxic action on cells due to the increase in the reactive oxygen species (ROS) levels. Furthermore, peptic-tryptic digested gliadin peptides (PT-gliadin) lead to an impairment in the autophagy pathway in an in vitro model based on Caco-2 cells. Considering these premises, in this study we have analyzed different mTOR-independent inducers, reporting that the disaccharide trehalose, a mTOR-independent autophagy activator, rescued the autophagy flux in Caco-2 cells treated with digested gliadin, as well as improved cell viability. Moreover, trehalose administration to Caco-2 cells in presence of digested gliadin reduced the intracellular levels of these toxic peptides. Altogether, these results showed the beneficial effects of trehalose in a CD in vitro model as well as underlining autophagy as a molecular pathway whose modulation might be promising in counteracting PT-gliadin cytotoxicity.


Assuntos
Doença Celíaca/metabolismo , Trealose/farmacologia , Autofagia/efeitos dos fármacos , Células CACO-2 , Doença Celíaca/imunologia , Sobrevivência Celular/efeitos dos fármacos , Gliadina/efeitos adversos , Gliadina/química , Gliadina/toxicidade , Glutens , Células HT29 , Humanos , Modelos Biológicos , Peptídeos , Espécies Reativas de Oxigênio , Trealose/metabolismo , Triticum/metabolismo
14.
Int J Mol Sci ; 18(2)2017 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-28208686

RESUMO

Celiac disease (CD) is a severe genetic autoimmune disorder, affecting about one in 100 people, where the ingestion of gluten leads to damage in the small intestine. Diagnosing CD is quite complex and requires blood tests and intestinal biopsy examinations. Controversy exists regarding making the diagnosis without biopsy, due to the large spectrum of manifesting symptoms; furthermore, small-intestinal gastroscopy examinations have a relatively complex management in the pediatric population. To identify novel molecular markers useful to increase the sensitivity and specificity in the diagnosis of pediatric CD patients, the expression levels of two key autophagy executor genes (ATG7 and BECN1) and their regulatory validated miRNAs (miR-17 and miR-30a, respectively) were analyzed by relative quantitative real-time-PCR on a cohort of confirmed CD patients compared to age-related controls. Among the investigated targets, the non-parametric Mann-Whitney U test and ROC analysis indicated the highest significant association of BECN1 with CD status in the blood, while in intestinal biopsies, all of the investigated sequences were positively associated with CD diagnosis. Nomogram-based analysis showed nearly opposite expression trends in blood compared to intestine tissue, while hierarchical clustering dendrograms enabled identifying CD and control subgroups based on specific genes and miRNA expression signatures. Next, using an established in vitro approach, through digested gliadin administration in Caco-2 cells, we also highlighted that the modulation of miR-17 endogenous levels using enriched exosomes increased the intracellular autophagosome content, thereby altering the autophagic status. Altogether, these results highlighted novel molecular markers that might be useful to increase the accuracy in CD diagnosis and in molecular-based stratification of the patients, further reinforcing the functional involvement of the regulation of the autophagy process within a digestive and autoimmune-related disorder as CD.


Assuntos
Autofagia/genética , Doença Celíaca/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Biomarcadores , Biópsia , Estudos de Casos e Controles , Doença Celíaca/imunologia , Doença Celíaca/patologia , Linhagem Celular , Criança , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Modelos Biológicos , Interferência de RNA , Curva ROC
15.
Front Mol Neurosci ; 9: 107, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833530

RESUMO

Increasing evidence highlighted the role of cancer stem cells (CSCs) in the development of tumor resistance to therapy, particularly in glioblastoma (GBM). Therefore, the development of new therapies, specifically directed against GBM CSCs, constitutes an important research avenue. Considering the extended range of cancer-related pathways modulated by histone acetylation/deacetylation processes, we studied the anti-proliferative and pro-apoptotic efficacy of givinostat (GVS), a pan-histone deacetylase inhibitor, on cell cultures enriched in CSCs, isolated from nine human GBMs. We report that GVS induced a significant reduction of viability and self-renewal ability in all GBM CSC cultures; conversely, GVS exposure did not cause a significant cytotoxic activity toward differentiated GBM cells and normal mesenchymal human stem cells. Analyzing the cellular and molecular mechanisms involved, we demonstrated that GVS affected CSC viability through the activation of programmed cell death pathways. In particular, a marked stimulation of macroautophagy was observed after GVS treatment. To understand the functional link between GVS treatment and autophagy activation, different genetic and pharmacological interfering strategies were used. We show that the up-regulation of the autophagy process, obtained by deprivation of growth factors, induced a reduction of CSC sensitivity to GVS, while the pharmacological inhibition of the autophagy pathway and the silencing of the key autophagy gene ATG7, increased the cell death rate induced by GVS. Altogether these findings suggest that autophagy represents a pro-survival mechanism activated by GBM CSCs to counteract the efficacy of the anti-proliferative activity of GVS. In conclusion, we demonstrate that GVS is a novel pharmacological tool able to target GBM CSC viability and its efficacy can be enhanced by autophagy inhibitory strategies.

16.
Int J Radiat Biol ; 92(5): 281-6, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26940444

RESUMO

Purpose The redox milieu, together with reactive oxygen species (ROS) accumulation, may play a role in mediating some biological effects of extremely-low-frequency electromagnetic fields (ELF-EMF). Some of us have recently reported that a pulsed EMF (PEMF) improves the antioxidant response of a drug-sensitive human neuroblastoma SH-SY5Y cell line to pro-oxidants. Since drug resistance may affect cell sensitivity to redox-based treatments, we wanted to verify whether drug-resistant human neuroblastoma SK-N-BE(2) cells respond to a PEMF in a similar fashion. Materials and methods SK-N-BE(2) cells were exposed to repeated 2 mT, 75 Hz PEMF (15 min each, repeated 3 times over 5 days), and ROS production, Mn-dependent superoxide dismutase (MnSOD)-based antioxidant protection and viability were assessed after 10 min or 30 min 1 mM hydrogen peroxide. Sham controls were kept at the same time in identical cell culture incubators. Results The PEMF increased the MnSOD-based antioxidant protection and reduced the ROS production in response to a pro-oxidant challenge. Conclusions Our work might lay foundation for the development of non-invasive PEMF-based approaches aimed at elevating endogenous antioxidant properties in cellular or tissue models.


Assuntos
Campos Eletromagnéticos , Peróxido de Hidrogênio/administração & dosagem , Neuroblastoma/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Oxidantes/administração & dosagem , Doses de Radiação
17.
J Cell Physiol ; 229(11): 1863-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24691646

RESUMO

Glioblastoma (GBM) remains the most aggressive and lethal brain tumor due to its molecular heterogeneity and high motility and invasion capabilities of its cells, resulting in high resistance to current standard treatments (surgery, followed by ionizing radiation combined with Temozolomide chemotherapy administration). Locus amplification, gene overexpression, and genetic mutations of epidermal growth factor receptor (EGFR) are hallmarks of GBM that can ectopically activate downstream signaling oncogenic cascades such as PI3K/Akt/mTOR pathway. Importantly, alteration of this pathway, involved also in the regulation of autophagy process, can improve radioresistance in GBM cells, thus promoting the aggressive phenotype of this tumor. In this work, the endogenous EGFR expression profile and autophagy were modulated to increase radiosensitivity behavior of human T98G and U373MG GBM cells. Our results primarily indicated that EGFR interfering induced radiosensitivity according to a decrease of the clonogenic capability of the investigated cells, and an effective reduction of the in vitro migratory features. Moreover, EGFR interfering resulted in an increase of Temozolomide (TMZ) cytotoxicity in T98G TMZ-resistant cells. In order to elucidate the involvement of the autophagy process as pro-death or pro-survival role in cells subjected to EGFR interfering, the key autophagic gene ATG7 was silenced, thereby producing a transient block of the autophagy process. This autophagy inhibition rescued clonogenic capability of irradiated and EGFR-silenced T98G cells, suggesting a pro-death autophagy contribution. To further confirm the functional interplay between EGFR and autophagy pathways, Rapamycin-mediated autophagy induction during EGFR modulation promoted further impairment of irradiated cells, in terms of clonogenic and migration capabilities. Taken together, these results might suggest a novel combined EGFR-autophagy modulation strategy, to overcome intrinsic GBM radioresistance, thus improving the efficacy of standard treatments. J. Cell. Physiol. 229: 1863-1873, 2014. © 2014 Wiley Periodicals, Inc.


Assuntos
Autofagia , Neoplasias Encefálicas/patologia , Movimento Celular , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Tolerância a Radiação , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Proteína 7 Relacionada à Autofagia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Células Clonais , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Inativação Gênica/efeitos da radiação , Humanos , RNA Interferente Pequeno/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante , Sirolimo/farmacologia , Temozolomida , Transfecção , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo
18.
J Cell Physiol ; 229(11): 1776-86, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24676932

RESUMO

In neurogenerative diseases, comprising Alzheimer's (AD), functional alteration in autophagy is considered one of the pathological hallmarks and a promising therapeutic target. Epidemiological investigations on the possible causes undergoing these diseases have suggested that electromagnetic fields (EMF) exposition can contribute to their etiology. On the other hand, EMF have therapeutic implications in reactivating neuronal functionality. To partly clarify this dualism, the effect of low-frequency EMF (LF-EMF) on the modulation of autophagy was investigated in human neuroblastoma SH-SY5Y cells, which were also subsequently exposed to Aß peptides, key players in AD. The results primarily point that LF-EMF induce a significant reduction of microRNA 30a (miR-30a) expression with a concomitant increase of Beclin1 transcript (BECN1) and its corresponding protein. Furthermore, LF-EMF counteract the induced miR-30a up-regulation in the same cells transfected with miR-30a mimic precursor molecules and, on the other side, rescue Beclin1 expression after BECN1 siRNA treatment. The expression of autophagy-related markers (ATG7 and LC3B-II) as well as the dynamics of autophagosome formation were also visualized after LF-EMF exposition. Finally, different protocols of repeated LF-EMF treatments were assayed to contrast the effects of Aß peptides in vitro administration. Overall, this research demonstrates, for the first time, that specific LF-EMF treatments can modulate in vitro the expression of a microRNA sequence, which in turn affects autophagy via Beclin1 expression. Taking into account the pivotal role of autophagy in the clearance of protein aggregates within the cells, our results indicate a potential cytoprotective effect exerted by LF-EMF in neurodegenerative diseases such as AD. J. Cell. Physiol. 229: 1776-1786, 2014. © 2014 Wiley Periodicals, Inc.


Assuntos
Autofagia , Campos Eletromagnéticos , Neuroblastoma/patologia , Peptídeos beta-Amiloides/toxicidade , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína Beclina-1 , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neuroblastoma/genética , Neuroblastoma/ultraestrutura
19.
J Cell Physiol ; 229(3): 277-86, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23929496

RESUMO

MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate protein expression by cleaving or repressing the translation of target mRNAs. In mammals, their function mainly represses the mRNA transcripts via imperfect complementary sequences in the 3'UTR of target mRNAs. Several miRNAs have been recently reported to be involved in modulation of different genes in tumors, including glioblastoma, the most frequent brain tumor in adults. Despite the improvements in treatments, survival of patients remains poor, and glioblastoma is one of the most lethal form of human cancer. To define novel strategies against this tumor, emerging research investigated miRNAs involvement in glioblastoma. In particular, this review is focused on miRNAs involved on the two principal programmed cell-death, apoptosis and autophagy, recently described from the literature. Moreover, the discovery of miRNAs role in glioma cell-death pathways has also revealed a new category of therapeutic targets, fundamental for this kind of tumor.


Assuntos
Apoptose , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , MicroRNAs/metabolismo , Animais , Apoptose/genética , Autofagia/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Glioma/terapia , Humanos , Prognóstico , Interferência de RNA
20.
Cancer Biol Ther ; 14(7): 574-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23792642

RESUMO

ATG7 is a key autophagy-promoting gene that plays a critical role in the regulation of cell death and survival of various cell types. We report here that microRNAs (miRNAs), a class of endogenous 22-24 nucleotide noncoding RNA molecules able to affect stability and translation of mRNA, may represent a novel mechanism for regulating ATG7 expression and therefore autophagy. We demonstrated that ATG7 is a potential target for miR-17, and this miRNA could negatively regulate ATG7 expression, resulting in a modulation of the autophagic status in T98G glioblastoma cells. Treatment of these tumor cells with the miR-17 mimic decreased, and with the antagomir increased, the expression of ATG7 protein. Dual luciferase reporter assay confirmed that a specific miR-17 binding sequence in the 3'-UTR of ATG7 contributed to the modulation of the expression of the gene by miR-17. Interestingly, our results showed that anti-miR-17 administration activated autophagy through autophagosome formation, as resulted by LC3B and ATG7 protein expression increase, and by the analysis of GFP-LC3 positive autophagosome vesicles in living cells. Furthermore, the autophagy activation by anti-miR-17 resulted in a decrease of the threshold resistance at temozolomide doses in T98G cells, while miR-17 modulation in U373-MG glioblastoma cells resulted in a sensitization to low ionizing radiation doses. Our study of the role of miR-17 in regulating ATG7 expression and autophagy reveals a novel function for this miRNA sequence in a critical cellular event with significant impacts in cancer development, progression and treatment.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Dacarbazina/análogos & derivados , Glioblastoma/genética , Glioblastoma/terapia , MicroRNAs/metabolismo , Enzimas Ativadoras de Ubiquitina/biossíntese , Autofagia/efeitos dos fármacos , Autofagia/genética , Autofagia/efeitos da radiação , Proteína 7 Relacionada à Autofagia , Linhagem Celular Tumoral , Dacarbazina/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , MicroRNAs/genética , Radiação Ionizante , Temozolomida , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA